Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Chinese Journal of Biotechnology ; (12): 1119-1130, 2023.
Article in Chinese | WPRIM | ID: wpr-970427

ABSTRACT

Heme, which exists widely in living organisms, is a porphyrin compound with a variety of physiological functions. Bacillus amyloliquefaciens is an important industrial strain with the characteristics of easy cultivation and strong ability for expression and secretion of proteins. In order to screen the optimal starting strain for heme synthesis, the laboratory preserved strains were screened with and without addition of 5-aminolevulinic acid (ALA). There was no significant difference in the heme production of strains BA, BAΔ6 and BAΔ6ΔsigF. However, upon addition of ALA, the heme titer and specific heme production of strain BAΔ6ΔsigF were the highest, reaching 200.77 μmol/L and 615.70 μmol/(L·g DCW), respectively. Subsequently, the hemX gene (encoding the cytochrome assembly protein HemX) of strain BAΔ6ΔsigF was knocked out to explore its role in heme synthesis. It was found that the fermentation broth of the knockout strain turned red, while the growth was not significantly affected. The highest ALA concentration in flask fermentation reached 82.13 mg/L at 12 h, which was slightly higher than that of the control 75.11 mg/L. When ALA was not added, the heme titer and specific heme production were 1.99 times and 1.45 times that of the control, respectively. After adding ALA, the heme titer and specific heme production were 2.08 times and 1.72 times higher than that of the control, respectively. Real-time quantitative fluorescent PCR showed that the expressions of hemA, hemL, hemB, hemC, hemD, and hemQ genes at transcription level were up-regulated. We demonstrated that deletion of hemX gene can improve the production of heme, which may facilitate future development of heme-producing strain.


Subject(s)
Gene Deletion , Bacillus amyloliquefaciens/metabolism , Aminolevulinic Acid/metabolism , Heme/metabolism , Fermentation
2.
Chinese Journal of Biotechnology ; (12): 4314-4328, 2021.
Article in Chinese | WPRIM | ID: wpr-921508

ABSTRACT

5-aminolevulinic acid (5-ALA) plays an important role in the fields of medicine and agriculture. 5-ALA can be produced by engineered Escherichia coli and Corynebacterium glutamicum. We systematically engineered the C4 metabolic pathway of C. glutamicum to further improve its ability to produce 5-ALA. Firstly, the hemA gene encoding 5-ALA synthase (ALAS) from Rhodobacter capsulatus and Rhodopseudomonas palustris were heterologously expressed in C. glutamicum, respectively. The RphemA gene of R. palustris which showed relatively high enzyme activity was selected. Screening of the optimal ribosome binding site sequence RBS5 significantly increased the activity of RphemA. The ALAS activity of the recombinant strain reached (221.87±3.10) U/mg and 5-ALA production increased by 14.3%. Subsequently, knocking out genes encoding α-ketoglutarate dehydrogenase inhibitor protein (odhI) and succinate dehydrogenase (sdhA) increased the flux of succinyl CoA towards the production of 5-ALA. Moreover, inhibiting the expression of hemB by means of sRNA reduced the degradation of 5-ALA, while overexpressing the cysteine/O-acetylserine transporter eamA increased the output efficiency of intracellular 5-ALA. Shake flask fermentation using the engineered strain C. glutamicum 13032/∆odhI/∆sdhA-sRNAhemB- RBS5RphemA-eamA resulted in a yield of 11.90 g/L, which was 57% higher than that of the original strain. Fed-batch fermentation using the engineered strain in a 5 L fermenter produced 25.05 g/L of 5-ALA within 48 h, which is the highest reported-to-date yield of 5-ALA from glucose.


Subject(s)
Aminolevulinic Acid/metabolism , Corynebacterium glutamicum/metabolism , Fermentation , Metabolic Engineering , Rhodobacter capsulatus/enzymology , Rhodopseudomonas/enzymology
4.
Electron. j. biotechnol ; 17(1): 4-4, Jan. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-706518

ABSTRACT

Background: Rice is globally one of the most important food crops, and NaCl stress is a key factor reducing rice yield. Amelioration of NaCl stress was assessed by determining the growth of rice seedlings treated with culture supernatants containing 5-aminolevulinic acid (ALA) secreted by strains of Rhodopseudomonas palustris (TN114 and PP803) and compared to the effects of synthetic ALA (positive control) and no ALA content (negative control). Results: The relative root growth of rice seedlings was determined under NaCl stress (50 mM NaCl), after 21 d of pretreatment. Pretreatments with 1 μM commercial ALA and 10X diluted culture supernatant of strain TN114 (2.57 μM ALA) gave significantly better growth than 10X diluted PP803 supernatant (2.11 μM ALA). Rice growth measured by dry weight under NaCl stress ordered the pretreatments as: commercial ALA N TN114 N PP803 N negative control. NaCl stress strongly decreased total chlorophyll of the plants that correlated with non-photochemical quenching of fluorescence (NPQ). The salt stress also strongly increased hydrogen peroxide (H2O2) concentration in NaCl-stressed plants. The pretreatments were ordered by reduction in H2O2 content under NaCl stress as: commercial ALA N TN114 N PP803 N negative control. The ALA pretreatments incurred remarkable increases of total chlorophyll and antioxidative activities of catalase (CAT), ascorbate peroxide (APx), glutathione reductase (GR) and superoxide dismutase (SOD); under NaCl stress commercial ALA and TN114 had generally stronger effects than PP803. Conclusions: The strain TN114 has potential as a plant growth stimulating bacterium that might enhance rice growth in saline paddy fields at a lower cost than commercial ALA.


Subject(s)
Rhodopseudomonas , Oryza/growth & development , Oryza/enzymology , Aminolevulinic Acid/metabolism , Antioxidants , Photosynthesis , Stress, Physiological , Superoxide Dismutase/metabolism , Catalase/metabolism , Chlorophyll/analysis , Crops, Agricultural , Seedlings , Electron Transport , Salinity , Ascorbate Peroxidases/metabolism , Fluorescence , Glutathione Reductase/metabolism
5.
Indian J Exp Biol ; 2004 Apr; 42(4): 419-23
Article in English | IMSEAR | ID: sea-56760

ABSTRACT

Mercury (0.01-1.0 mM) inhibited chlorophyll formation in greening maize leaf segments. However, supplementing incubation medium with 2-oxoglutarate, maintained substantially higher level of chlorophyll in absence of metal after an initial period of 8 hr. On preincubation of leaf segments with HgCl2, per cent inhibition of chlorophyll synthesis by metal was same in the presence and absence of 2-oxoglutarate. Supply of 2-oxoglutarate (0.1-10.0 mM) exerted concentration dependent effect on chlorophyll formation in absence or presence of metal. Increase in delta-amino levulinic acid dehydratase as well as NADH-glutamate synthase activity and decrease in NADH-glutamate dehydrogenase activity by 2-oxoglutarate in the presence of Hg suggested that glutamate for delta-amino levulinic acid synthesis could be made available from NH4+ assimilation via., glutamine synthetase/glutamate synthase pathway during mercury toxicity.


Subject(s)
Aminolevulinic Acid/metabolism , Ammonia/metabolism , Chlorophyll/biosynthesis , Dose-Response Relationship, Drug , Glutamate Synthase/metabolism , Glutamic Acid/metabolism , Ketoglutaric Acids/pharmacology , Light , Mercury/toxicity , NAD/metabolism , Photosynthesis , Plant Leaves/drug effects , Porphobilinogen Synthase/metabolism , Radiation-Protective Agents/pharmacology , Zea mays/drug effects
6.
Braz. j. med. biol. res ; 29(7): 841-51, July 1996. ilus
Article in English | LILACS | ID: lil-181496

ABSTRACT

Highly reactive oxyradicals can be generated in vitro by iron-catalyzed aerobic oxidation of synthetic and naturally occuring substances capable of enolization in aqueous medium. Of biological interest are alfa-hydroxy- and alfa-aminocarbonyls such as carbohydrates, 5-aminolevulinic acid, and aminoacetone which tautomerize to the corresponding enediols and enolamines and yield oxyradicals initiated by electron transfer to dioxygen. Free radicals have been implicated in several normal and pathological processes. We briefly review our hypothesis of an in vivo prooxidant role of 5-aminolev-ulinic acid (ALA), the heme precursor accumulated in several porphyric disorders (e.g., lead poisoning, acute intermittent porphyria (AIP), tyrosinosis). Accordingly, i) ALA undergoes transition metal-catalyzed oxidation to give O-2, H2O2 and HO; ii) ALA induces iron release from ferritin, lipid peroxidation of cardiolipin-rich vesicles, single strand breaks in plasmid DNA, and guanosine oxidation in calf thymus DNA; iii) ALA causes Ca2+ -mediated rat liver mitochondria permeabilization; iv) rats chronically treated with ALA exhibit increased glycolytic metabolism; v) brain extracts of ALA-treated rats reveal increased levels of thiobarbituric acid reactive substances, direct chemiluminescence intensity, carbonyl proteins, ferritin, and "free iron"and gama-aminobutyric acid-receptor dissociation constant, and vi) patients with AIP and lead-exposed workers present augmented erythrocytic levels of the antioxidant enzymes superoxide dismutase and glutathione peroxidase. These data indicate the involvement of ALA-generated reactive species in the clinical manifestations (neuropathy, mental changes, muscle weakness, hepatoma) shared by the aforementioned inherited and acquired porphyric diseases.


Subject(s)
Humans , Animals , Rats , Aminolevulinic Acid/metabolism , Reactive Oxygen Species/metabolism , Lead Poisoning/metabolism , Oxidative Stress , Porphyria, Acute Intermittent/metabolism , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/urine , Calcium/metabolism , Cerebrum/drug effects , Cerebrum/metabolism , Heart , DNA Damage , Reactive Oxygen Species/pharmacology , Liver , Liver/metabolism , Heme/biosynthesis , Iron/metabolism , Mitochondria/metabolism , Lipid Peroxidation , Porphyrias/metabolism , Porphyrias/urine , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL